### organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### 3,3'-[1,2-Phenylenebis(methylene)]bis(1heptylbenzimidazolium) dibromide monohydrate

#### Rosenani A. Haque,<sup>a</sup> Muhammad Adnan Iqbal,<sup>a</sup> Madhukar Hemamalini<sup>b</sup> and Hoong-Kun Fun<sup>b</sup>\*‡

<sup>a</sup>School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and <sup>b</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 14 June 2011; accepted 16 June 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.032; wR factor = 0.077; data-to-parameter ratio = 29.3.

In the title salt,  $C_{36}H_{48}N_4^{2+}\cdot 2Br^-\cdot H_2O$ , the central benzene ring makes dihedral angles of 84.77 (9) and 69.92 (7)° with the adjacent imidazole rings. In the crystal, one of the heptyl groups is disordered over two sets of sites with an occupancy ratio of 0.474 (5):0.526 (5). In the crystal, the cations, anions and water molecules are connected *via* intermolecular O– $H\cdots Br, C-H\cdots Br$  and C– $H\cdots O$  hydrogen bonds, forming a three-dimensional network.

#### **Related literature**

For details and applications of *N*-heterocyclic carbenes (NHCs), see: Winkelmann & Navarro (2010); Kascatan-Nebioglu *et al.* (2007); Teyssot *et al.* (2009); Herrmann *et al.* (1995); Choi *et al.* (2001); Kumar & Kumar (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).



‡ Thomson Reuters ResearcherID: A-3561-2009.

#### Experimental

#### Crystal data

 $\begin{array}{lll} C_{36} {\rm H}_{48} {\rm N}_4^{2+} \cdot 2 {\rm Br}^{-1} \cdot {\rm H}_2 {\rm O} & \gamma = 91.946 ~(1)^\circ \\ M_r = 714.62 & V = 1792.83 ~(5) ~{\rm \AA}^3 \\ {\rm Triclinic}, P\overline{1} & Z = 2 \\ a = 8.8494 ~(1) ~{\rm \AA} & {\rm Mo} ~{\rm K\alpha} ~{\rm radiation} \\ b = 14.7170 ~(3) ~{\rm \AA} & \mu = 2.29 ~{\rm mm}^{-1} \\ c = 16.0838 ~(2) ~{\rm \AA} & T = 100 ~{\rm K} \\ \alpha = 115.705 ~(1)^\circ & 0.39 \times 0.18 \times 0.16 ~{\rm mm} \\ \beta = 105.380 ~(1)^\circ \end{array}$ 

#### Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009)  $T_{min} = 0.469, T_{max} = 0.715$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$  $wR(F^2) = 0.077$ S = 1.0212945 reflections 442 parameters 9 restraints H atoms treated by a mixture of independent and constrained refinement

50860 measured reflections

12945 independent reflections

10091 reflections with  $I > 2\sigma(I)$ 

 $\Delta \rho_{\text{max}} = 0.84 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\text{min}} = -0.75 \text{ e } \text{\AA}^{-3}$ 

 $R_{\rm int} = 0.027$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$          | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $O1W - H1W1 \cdots Br1$              | 0.84 (3) | 2.50 (3)                | 3.3271 (17)  | 169 (2)                              |
| $O1W - H2W1 \cdots Br2$              | 0.79 (3) | 2.54 (3)                | 3.3280 (14)  | 177 (3)                              |
| $C1 - H1A \cdot \cdot \cdot Br1^{i}$ | 0.95     | 2.80                    | 3.6093 (15)  | 144                                  |
| C3−H3A···Br2 <sup>ii</sup>           | 0.95     | 2.92                    | 3.7866 (16)  | 153                                  |
| C5−H5A···Br2 <sup>iii</sup>          | 0.95     | 2.89                    | 3.8162 (17)  | 167                                  |
| $C8-H8A\cdots Br2^{iv}$              | 0.99     | 2.93                    | 3.9117 (16)  | 172                                  |
| C15−H15A···Br2 <sup>iv</sup>         | 0.99     | 2.72                    | 3.6809 (19)  | 165                                  |
| C15−H15B···Br1 <sup>iv</sup>         | 0.99     | 2.80                    | 3.7842 (15)  | 170                                  |
| $C18-H18A\cdots O1W^{v}$             | 0.95     | 2.46                    | 3.187 (2)    | 133                                  |
| C20−H20A···Br2                       | 0.95     | 2.76                    | 3.6602 (16)  | 158                                  |
| $C22 - H22A \cdots Br1^{i}$          | 0.95     | 2.70                    | 3.5577 (15)  | 150                                  |
| $C23-H23A\cdots Br2^{i}$             | 0.99     | 2.89                    | 3.7836 (14)  | 151                                  |
| $C23 - H23B \cdots Br2^{ii}$         | 0.99     | 2.81                    | 3.7285 (17)  | 154                                  |
|                                      |          |                         |              |                                      |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z + 1; (iii) x, y, z + 1; (iv) -x, -y + 1, -z + 1; (v) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

RAH thanks Universiti Sains Malaysia (USM) for the FRGS fund (203/PKIMIA/671115), short term grant (304/ PKIMIA639001), and RU grants (1001/PKIMIA/811157) and (1001/PKIMIA/823082). MAI is grateful to (IPS) USM for financial support [fellowship: USM.IPS/JWT/1/19 (JLD 6)]. HKF and MH thank the Malaysian Government and UUSM for the Research University Grant No. 1001/PFIZIK/811160. MH thanks USM for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2732).

#### References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Choi, T.-L., Chatterjee, A. K. & Grubbs, R. H. (2001). Angew. Chem. Int. Ed. 40, 1277–1279.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. 34, 2371–2374.
- Kascatan-Nebioglu, A., Panzner, M. J., Tessier, C. A., Cannon, C. L. & Youngs, W. J. (2007). Coord. Chem. Rev. 251, 884–895.
- Kumar, S. & Kumar, S. (2009). Tetrahedron Lett. 50, 4463-4466.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Teyssot, M.-L., Jarrousse, A.-S., Manin, M., Chevry, A., Roche, S., Norre, F., Beaudoin, C., Morel, L., Boyer, D., Mahiou, R. & Gautier, A. (2009). *Dalton Trans.* pp. 6894–6902.
- Winkelmann, O. H. & Navarro, O. (2010). Adv. Synth. Catal. 352, 212-214.

Acta Cryst. (2011). E67, o1814-o1815 [doi:10.1107/S1600536811023476]

#### 3,3'-[1,2-Phenylenebis(methylene)]bis(1-heptylbenzimidazolium) dibromide monohydrate

#### R. A. Haque, M. A. Iqbal, M. Hemamalini and H.-K. Fun

#### Comment

*N*-Heterocyclic Carbenes (NHCs) is a versatile class of ligands, which have widespread applications in organometallic chemistry (Winkelmann & Navarro, 2010). Metal complexes of NHCs have proven to be potential antimicrobial (Kascatan-Nebioglu *et al.*, 2007) and anticancer (Teyssot *et al.*, 2009) agents. Notably, NHCs also exhibit excellent catalytical activity for Heck and Suzuki coupling reactions (Herrmann *et al.*, 1995) and Metathesis Cross-Coupling reactions (Choi *et al.*, 2001). Benzimidazole-based NHCs of similar structures and their metal complexes are now known to be effective catalysts for the cross coupling reactions of different alcohols and ratiometric sensing (Kumar & Kumar, 2009).

The asymmetric unit of the title compound, (Fig. 1), consists of a 3,3'-[1,2-phenylenebis(methylene)]bis(1-heptylbenzimidazolium) cation, two bromine anions and one water molecule. One of the heptyl group is disordered over two sets ofsites, with an occupancy ratio of 0.474 (5):0.526 (5). The central benzene (C9–C14) ring makes dihedral angles of 84.77(9) and 69.92 (7)° with the adjacent imidazole (N1/N2/C1/C2/C7) and (N3/N4/C16/C21/C22) rings, respectively.

In the crystal structure (Fig. 2), the cations, anions and water molecules are linked together *via* intermolecular O1W—H1W1···Br1, O1W—H2W1···Br2, C1—H1A···Br1, C3—H3A···Br2, C5—H5A···Br2, C8—H8A···Br2, C15—H15A···Br2, C15—H15B···Br1, C18—H18A····O1W, C20—H20A···Br2, C22—H22A···Br1, C23—H23A···Br2 and C23—H23B···Br2 (Table 1) hydrogen bonds, forming a three-dimensional network.

#### **Experimental**

A mixture of benzimidazole (2.36 g, 20 mmol) and finely ground potassium hydroxide (2.36 g, 30 mmol) in 30 ml of DMSO was stirred at room temperature (27–28 °C) for 30 minutes. 1-bromoheptane (3.14 ml, 20 mmol) was added drop-wise in this consistently stirred mixture with further stirring for 2 h at the same temperature, poured into water (300 ml) and was extracted by chloroform ( $5 \times 20$  ml). The extract was dried by magnesium sulphate and evaporated under reduced pressure to afford *N*-heptylbenzimidazole (1) as a thick yellowish fluid (3.87 g, 89.6%). Furthermore, a mixture of 1 (2.16 g, 10 mmol) and 1,2-bis(bromomethyl)benzene (1.32 g, 5 mmol) in dioxane (30 ml) was refluxed at 90 °C for 12 h. Desired compound (2.2Br) appeared as beige-colored precipitates in dark brown solution. The mixture was filtered and precipitates were washed by fresh dioxane ( $3 \times 5$  ml), dried at room temperature for 24 h, and soft lumps so obtained were ground to fine powder (1.72 g, 49.4%). Hot (saturated) solution of 2.2Br in deuterated DMSO (0.5 ml) was cooled to room temperature in NMR tube overnight to get single (prismatic) crystals suitable for X-ray diffraction study.

#### Refinement

Atoms H1W1 and H1W2 were located in a difference Fourier map and refined freely [O-H = 0.79 (3)-0.84 (2) Å]. The remaining H atoms were positioned geometrically (C-H = 0.95-0.99 Å) and were refined using a riding model, with  $U_{iso}(H) = 1.2 \text{ or } 1.5U_{eq}(C)$ . A rotating group model was applied to the methyl groups. One of the heptyl group is disordered

over two sets of sites, with an occupancy ratio of 0.474 (5):0.526 (5). SAME restraints were applied in the refinement of the disordered components. In addition, the thermal ellipsoids of C32/C32X and C28/C29 were restrained to be equal.

#### **Figures**



Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) network.

#### 3,3'-[1,2-Phenylenebis(methylene)]bis(1-heptylbenzimidazolium) dibromide monohydrate

| $C_{36}H_{48}N_4^{2+}\cdot 2Br^-\cdot H_2O$ | Z = 2                                                 |
|---------------------------------------------|-------------------------------------------------------|
| $M_r = 714.62$                              | F(000) = 744                                          |
| Triclinic, <i>P</i> 1                       | $D_{\rm x} = 1.324 {\rm ~Mg~m}^{-3}$                  |
| Hall symbol: -P 1                           | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 8.8494(1) Å                             | Cell parameters from 9922 reflections                 |
| b = 14.7170(3) Å                            | $\theta = 2.6 - 33.7^{\circ}$                         |
| c = 16.0838 (2) Å                           | $\mu = 2.29 \text{ mm}^{-1}$                          |
| $\alpha = 115.705 (1)^{\circ}$              | T = 100  K                                            |
| $\beta = 105.380 \ (1)^{\circ}$             | Block, colourless                                     |
| $\gamma = 91.946 (1)^{\circ}$               | $0.39 \times 0.18 \times 0.16 \text{ mm}$             |
| $V = 1792.83 (5) \text{ Å}^3$               |                                                       |

#### Data collection

| Bruker SMART APEXII CCD area-detector diffractometer                 | 12945 independent reflections                                             |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                             | 10091 reflections with $I > 2\sigma(I)$                                   |
| graphite                                                             | $R_{\rm int} = 0.027$                                                     |
| $\varphi$ and $\omega$ scans                                         | $\theta_{\text{max}} = 32.5^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2009) | $h = -13 \rightarrow 13$                                                  |
| $T_{\min} = 0.469, T_{\max} = 0.715$                                 | $k = -22 \rightarrow 22$                                                  |
| 50860 measured reflections                                           | $l = -24 \rightarrow 24$                                                  |
|                                                                      |                                                                           |

#### Refinement

| Refinement on $F^2$ | Primary atom site location: structure-invariant direc methods   |
|---------------------|-----------------------------------------------------------------|
| Refinement on $F^2$ | Primary atom site location: structure-invariant dire<br>methods |

| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
|---------------------------------|-------------------------------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.032$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.077$               | H atoms treated by a mixture of independent and constrained refinement              |
| <i>S</i> = 1.02                 | $w = 1/[\sigma^2(F_o^2) + (0.0359P)^2 + 0.6181P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 12945 reflections               | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |
| 442 parameters                  | $\Delta \rho_{max} = 0.84 \text{ e} \text{ Å}^{-3}$                                 |
| 9 restraints                    | $\Delta \rho_{min} = -0.75 \text{ e } \text{\AA}^{-3}$                              |

#### Special details

**Experimental**. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|     | x             | У             | z             | $U_{\rm iso}*/U_{\rm eq}$ | Occ. (<1) |
|-----|---------------|---------------|---------------|---------------------------|-----------|
| Br1 | 0.365462 (16) | 0.228743 (11) | 0.219134 (10) | 0.02173 (4)               |           |
| Br2 | 0.031239 (16) | 0.512483 (11) | 0.193441 (10) | 0.02124 (4)               |           |
| N1  | 0.48319 (13)  | 0.66074 (9)   | 0.94225 (8)   | 0.0168 (2)                |           |
| N2  | 0.72144 (13)  | 0.65150 (9)   | 1.01988 (8)   | 0.0172 (2)                |           |
| N3  | 0.07774 (13)  | 0.69630 (9)   | 0.68277 (8)   | 0.0178 (2)                |           |
| N4  | 0.19471 (14)  | 0.67552 (10)  | 0.57302 (9)   | 0.0198 (2)                |           |
| C1  | 0.63655 (16)  | 0.66612 (10)  | 0.94634 (10)  | 0.0171 (2)                |           |
| H1A | 0.6787        | 0.6786        | 0.9030        | 0.021*                    |           |
| C2  | 0.61934 (16)  | 0.63548 (10)  | 1.06701 (10)  | 0.0167 (2)                |           |
| C3  | 0.64670 (17)  | 0.61359 (11)  | 1.14536 (10)  | 0.0193 (3)                |           |
| H3A | 0.7500        | 0.6096        | 1.1792        | 0.023*                    |           |
| C4  | 0.51353 (18)  | 0.59803 (11)  | 1.17085 (10)  | 0.0207 (3)                |           |
| H4A | 0.5262        | 0.5831        | 1.2239        | 0.025*                    |           |
| C5  | 0.36033 (18)  | 0.60365 (11)  | 1.12058 (11)  | 0.0215 (3)                |           |
| H5A | 0.2727        | 0.5921        | 1.1405        | 0.026*                    |           |
| C6  | 0.33375 (16)  | 0.62550 (11)  | 1.04280 (10)  | 0.0193 (3)                |           |
| H6A | 0.2306        | 0.6294        | 1.0088        | 0.023*                    |           |
| C7  | 0.46771 (16)  | 0.64135 (10)  | 1.01748 (10)  | 0.0166 (2)                |           |
| C8  | 0.35503 (16)  | 0.67445 (11)  | 0.87201 (10)  | 0.0187 (3)                |           |
| H8A | 0.2604        | 0.6221        | 0.8496        | 0.022*                    |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| H8B  | 0.3889        | 0.6635       | 0.8149       | 0.022*     |
|------|---------------|--------------|--------------|------------|
| С9   | 0.30936 (16)  | 0.77994 (11) | 0.91357 (10) | 0.0177 (3) |
| C10  | 0.40829 (17)  | 0.86003 (11) | 0.99982 (11) | 0.0220 (3) |
| H10A | 0.5053        | 0.8482       | 1.0332       | 0.026*     |
| C11  | 0.36713 (19)  | 0.95694 (12) | 1.03770 (11) | 0.0252 (3) |
| H11A | 0.4355        | 1.0105       | 1.0967       | 0.030*     |
| C12  | 0.2263 (2)    | 0.97520 (12) | 0.98931 (11) | 0.0266 (3) |
| H12A | 0.1980        | 1.0413       | 1.0148       | 0.032*     |
| C13  | 0.12706 (19)  | 0.89630 (13) | 0.90350 (11) | 0.0253 (3) |
| H13A | 0.0305        | 0.9089       | 0.8705       | 0.030*     |
| C14  | 0.16660 (16)  | 0.79853 (11) | 0.86476 (10) | 0.0193 (3) |
| C15  | 0.04692 (16)  | 0.71575 (12) | 0.77466 (10) | 0.0204 (3) |
| H15A | 0.0452        | 0.6514       | 0.7803       | 0.025*     |
| H15B | -0.0599       | 0.7348       | 0.7715       | 0.025*     |
| C16  | -0.03893 (16) | 0.64533 (11) | 0.59265 (10) | 0.0183 (3) |
| C17  | -0.20136 (17) | 0.61256 (12) | 0.56824 (11) | 0.0215 (3) |
| H17A | -0.2515       | 0.6215       | 0.6160       | 0.026*     |
| C18  | -0.28532 (18) | 0.56616 (12) | 0.46997 (11) | 0.0250 (3) |
| H18A | -0.3966       | 0.5430       | 0.4497       | 0.030*     |
| C19  | -0.21027 (19) | 0.55241 (12) | 0.39959 (11) | 0.0261 (3) |
| H19A | -0.2724       | 0.5198       | 0.3330       | 0.031*     |
| C20  | -0.04885 (19) | 0.58480 (12) | 0.42390 (11) | 0.0246 (3) |
| H20A | 0.0016        | 0.5754       | 0.3761       | 0.029*     |
| C21  | 0.03504 (17)  | 0.63207 (11) | 0.52276 (10) | 0.0197 (3) |
| C22  | 0.21526 (16)  | 0.71327 (11) | 0.66812 (10) | 0.0190 (3) |
| H22A | 0.3135        | 0.7472       | 0.7180       | 0.023*     |
| C23  | 0.89380 (16)  | 0.64783 (11) | 1.04495 (10) | 0.0199 (3) |
| H23A | 0.9285        | 0.6320       | 0.9872       | 0.024*     |
| H23B | 0.9132        | 0.5921       | 1.0632       | 0.024*     |
| C24  | 0.99196 (17)  | 0.74804 (11) | 1.12807 (11) | 0.0217 (3) |
| H24A | 1.1005        | 0.7363       | 1.1530       | 0.026*     |
| H24B | 0.9441        | 0.7700       | 1.1814       | 0.026*     |
| C25  | 1.0042 (2)    | 0.83405 (12) | 1.10038 (12) | 0.0279 (3) |
| H25A | 0.8967        | 0.8498       | 1.0803       | 0.033*     |
| H25B | 1.0449        | 0.8106       | 1.0440       | 0.033*     |
| C26  | 1.1138 (2)    | 0.93188 (13) | 1.18354 (13) | 0.0312 (4) |
| H26A | 1.2184        | 0.9146       | 1.2074       | 0.037*     |
| H26B | 1.1310        | 0.9804       | 1.1580       | 0.037*     |
| C27  | 1.0495 (2)    | 0.98436 (13) | 1.26812 (13) | 0.0318 (4) |
| H27A | 1.0368        | 0.9369       | 1.2954       | 0.038*     |
| H27B | 0.9428        | 0.9987       | 1.2436       | 0.038*     |
| C28  | 1.1542 (3)    | 1.08388 (15) | 1.34891 (15) | 0.0474 (4) |
| H28A | 1.1636        | 1.1328       | 1.3227       | 0.057*     |
| H28B | 1.2621        | 1.0704       | 1.3724       | 0.057*     |
| C29  | 1.0880 (3)    | 1.13208 (15) | 1.43403 (15) | 0.0474 (4) |
| H29A | 1.1598        | 1.1953       | 1.4847       | 0.071*     |
| H29B | 1.0790        | 1.0841       | 1.4605       | 0.071*     |
| H29C | 0.9827        | 1.1478       | 1.4116       | 0.071*     |
| C30  | 0.31844 (18)  | 0.68129 (12) | 0.52875 (11) | 0.0237 (3) |

| H30A | 0.3231       | 0.6112       | 0.4817      | 0.028*      | 0.474 (5) |
|------|--------------|--------------|-------------|-------------|-----------|
| H30B | 0.4229       | 0.7092       | 0.5801      | 0.028*      | 0.474 (5) |
| H30C | 0.3035       | 0.6192       | 0.4701      | 0.028*      | 0.526 (5) |
| H30D | 0.4214       | 0.6897       | 0.5729      | 0.028*      | 0.526 (5) |
| C31  | 0.2912 (8)   | 0.7454 (5)   | 0.4784 (4)  | 0.0235 (11) | 0.474 (5) |
| H31A | 0.2774       | 0.8131       | 0.5252      | 0.028*      | 0.474 (5) |
| H31D | 0.1887       | 0.7142       | 0.4256      | 0.028*      | 0.474 (5) |
| C32  | 0.4121 (14)  | 0.7637 (9)   | 0.4352 (8)  | 0.0239 (12) | 0.474 (5) |
| H32A | 0.3838       | 0.7084       | 0.3677      | 0.029*      | 0.474 (5) |
| H32D | 0.5159       | 0.7554       | 0.4712      | 0.029*      | 0.474 (5) |
| C33  | 0.4379 (5)   | 0.8674 (3)   | 0.4321 (3)  | 0.0283 (9)  | 0.474 (5) |
| H33A | 0.3348       | 0.8910       | 0.4194      | 0.034*      | 0.474 (5) |
| H33B | 0.5095       | 0.9198       | 0.4956      | 0.034*      | 0.474 (5) |
| C34  | 0.5109 (7)   | 0.8542 (6)   | 0.3522 (5)  | 0.0284 (13) | 0.474 (5) |
| H34A | 0.6021       | 0.8179       | 0.3584      | 0.034*      | 0.474 (5) |
| H34B | 0.4308       | 0.8102       | 0.2884      | 0.034*      | 0.474 (5) |
| C35  | 0.5674 (5)   | 0.9528 (3)   | 0.3533 (3)  | 0.0302 (9)  | 0.474 (5) |
| H35A | 0.4821       | 0.9949       | 0.3581      | 0.036*      | 0.474 (5) |
| H35B | 0.6609       | 0.9917       | 0.4114      | 0.036*      | 0.474 (5) |
| C36  | 0.6121 (7)   | 0.9350 (6)   | 0.2638 (4)  | 0.0435 (14) | 0.474 (5) |
| H36A | 0.6544       | 1.0007       | 0.2699      | 0.065*      | 0.474 (5) |
| H36B | 0.5177       | 0.9018       | 0.2064      | 0.065*      | 0.474 (5) |
| H36C | 0.6932       | 0.8909       | 0.2571      | 0.065*      | 0.474 (5) |
| C31X | 0.3150 (8)   | 0.7765 (4)   | 0.5075 (4)  | 0.0293 (11) | 0.526 (5) |
| H31B | 0.2075       | 0.7748       | 0.4674      | 0.035*      | 0.526 (5) |
| H31C | 0.3463       | 0.8414       | 0.5687      | 0.035*      | 0.526 (5) |
| C32X | 0.4359 (12)  | 0.7661 (8)   | 0.4522 (7)  | 0.0239 (12) | 0.526 (5) |
| H32B | 0.4350       | 0.6924       | 0.4124      | 0.029*      | 0.526 (5) |
| H32C | 0.5435       | 0.7961       | 0.5000      | 0.029*      | 0.526 (5) |
| C33X | 0.4057 (4)   | 0.8177 (3)   | 0.3857 (3)  | 0.0265 (8)  | 0.526 (5) |
| H33C | 0.3278       | 0.7700       | 0.3223      | 0.032*      | 0.526 (5) |
| H33D | 0.3582       | 0.8792       | 0.4150      | 0.032*      | 0.526 (5) |
| C34X | 0.5560 (6)   | 0.8489 (5)   | 0.3687 (5)  | 0.0227 (10) | 0.526 (5) |
| H34C | 0.6078       | 0.7883       | 0.3439      | 0.027*      | 0.526 (5) |
| H34D | 0.6308       | 0.9005       | 0.4314      | 0.027*      | 0.526 (5) |
| C35X | 0.5249 (4)   | 0.8934 (3)   | 0.2968 (3)  | 0.0292 (8)  | 0.526 (5) |
| H35C | 0.4514       | 0.8415       | 0.2337      | 0.035*      | 0.526 (5) |
| H35D | 0.4720       | 0.9535       | 0.3210      | 0.035*      | 0.526 (5) |
| C36X | 0.6762 (6)   | 0.9258 (4)   | 0.2811 (4)  | 0.0358 (10) | 0.526 (5) |
| H36D | 0.6505       | 0.9590       | 0.2391      | 0.054*      | 0.526 (5) |
| H36E | 0.7231       | 0.8653       | 0.2503      | 0.054*      | 0.526 (5) |
| H36F | 0.7524       | 0.9738       | 0.3439      | 0.054*      | 0.526 (5) |
| O1W  | 0.39216 (15) | 0.47948 (11) | 0.29323 (9) | 0.0324 (3)  |           |
| H1W1 | 0.380 (3)    | 0.4177 (19)  | 0.2809 (17) | 0.050 (7)*  |           |
| H2W1 | 0.307 (3)    | 0.4896 (18)  | 0.2719 (17) | 0.048 (7)*  |           |
|      |              |              |             |             |           |

### Atomic displacement parameters $(Å^2)$

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$    |
|------|-------------|-------------|-------------|--------------|-------------|-------------|
| Br1  | 0.01641 (7) | 0.02614 (8) | 0.02309 (7) | 0.00403 (5)  | 0.00799 (5) | 0.01061 (6) |
| Br2  | 0.01825 (7) | 0.02841 (8) | 0.02049 (7) | 0.00428 (5)  | 0.00856 (5) | 0.01277 (6) |
| N1   | 0.0142 (5)  | 0.0200 (5)  | 0.0152 (5)  | 0.0023 (4)   | 0.0050 (4)  | 0.0069 (4)  |
| N2   | 0.0143 (5)  | 0.0208 (6)  | 0.0172 (5)  | 0.0032 (4)   | 0.0067 (4)  | 0.0081 (5)  |
| N3   | 0.0144 (5)  | 0.0243 (6)  | 0.0144 (5)  | 0.0029 (4)   | 0.0046 (4)  | 0.0087 (5)  |
| N4   | 0.0181 (5)  | 0.0254 (6)  | 0.0185 (5)  | 0.0043 (5)   | 0.0083 (4)  | 0.0108 (5)  |
| C1   | 0.0166 (6)  | 0.0182 (6)  | 0.0158 (6)  | 0.0028 (5)   | 0.0064 (5)  | 0.0064 (5)  |
| C2   | 0.0159 (6)  | 0.0175 (6)  | 0.0166 (6)  | 0.0039 (5)   | 0.0077 (5)  | 0.0063 (5)  |
| C3   | 0.0211 (6)  | 0.0203 (6)  | 0.0169 (6)  | 0.0055 (5)   | 0.0074 (5)  | 0.0078 (5)  |
| C4   | 0.0262 (7)  | 0.0201 (6)  | 0.0186 (6)  | 0.0053 (5)   | 0.0112 (6)  | 0.0089 (5)  |
| C5   | 0.0215 (7)  | 0.0210 (7)  | 0.0218 (7)  | 0.0023 (5)   | 0.0119 (6)  | 0.0068 (6)  |
| C6   | 0.0157 (6)  | 0.0205 (6)  | 0.0202 (6)  | 0.0024 (5)   | 0.0079 (5)  | 0.0067 (5)  |
| C7   | 0.0163 (6)  | 0.0171 (6)  | 0.0152 (6)  | 0.0026 (5)   | 0.0059 (5)  | 0.0060 (5)  |
| C8   | 0.0159 (6)  | 0.0211 (6)  | 0.0155 (6)  | 0.0017 (5)   | 0.0025 (5)  | 0.0066 (5)  |
| С9   | 0.0164 (6)  | 0.0214 (6)  | 0.0161 (6)  | 0.0029 (5)   | 0.0061 (5)  | 0.0087 (5)  |
| C10  | 0.0194 (6)  | 0.0242 (7)  | 0.0199 (7)  | 0.0030 (5)   | 0.0041 (5)  | 0.0090 (6)  |
| C11  | 0.0299 (8)  | 0.0224 (7)  | 0.0204 (7)  | 0.0030 (6)   | 0.0084 (6)  | 0.0071 (6)  |
| C12  | 0.0350 (8)  | 0.0250 (7)  | 0.0243 (7)  | 0.0127 (6)   | 0.0144 (7)  | 0.0118 (6)  |
| C13  | 0.0251 (7)  | 0.0347 (8)  | 0.0228 (7)  | 0.0131 (6)   | 0.0116 (6)  | 0.0163 (6)  |
| C14  | 0.0169 (6)  | 0.0276 (7)  | 0.0159 (6)  | 0.0048 (5)   | 0.0071 (5)  | 0.0110 (6)  |
| C15  | 0.0145 (6)  | 0.0327 (8)  | 0.0153 (6)  | 0.0032 (5)   | 0.0050 (5)  | 0.0119 (6)  |
| C16  | 0.0172 (6)  | 0.0221 (6)  | 0.0152 (6)  | 0.0038 (5)   | 0.0042 (5)  | 0.0088 (5)  |
| C17  | 0.0172 (6)  | 0.0272 (7)  | 0.0202 (7)  | 0.0042 (5)   | 0.0056 (5)  | 0.0111 (6)  |
| C18  | 0.0193 (7)  | 0.0274 (7)  | 0.0235 (7)  | 0.0030 (6)   | 0.0022 (6)  | 0.0100 (6)  |
| C19  | 0.0259 (7)  | 0.0301 (8)  | 0.0162 (6)  | 0.0045 (6)   | 0.0017 (6)  | 0.0080 (6)  |
| C20  | 0.0267 (7)  | 0.0294 (8)  | 0.0173 (6)  | 0.0063 (6)   | 0.0078 (6)  | 0.0097 (6)  |
| C21  | 0.0188 (6)  | 0.0229 (7)  | 0.0181 (6)  | 0.0044 (5)   | 0.0062 (5)  | 0.0096 (5)  |
| C22  | 0.0162 (6)  | 0.0241 (7)  | 0.0180 (6)  | 0.0038 (5)   | 0.0055 (5)  | 0.0107 (5)  |
| C23  | 0.0144 (6)  | 0.0255 (7)  | 0.0204 (6)  | 0.0062 (5)   | 0.0073 (5)  | 0.0097 (6)  |
| C24  | 0.0170 (6)  | 0.0262 (7)  | 0.0201 (7)  | 0.0032 (5)   | 0.0053 (5)  | 0.0093 (6)  |
| C25  | 0.0299 (8)  | 0.0288 (8)  | 0.0273 (8)  | 0.0018 (6)   | 0.0098 (6)  | 0.0146 (7)  |
| C26  | 0.0244 (7)  | 0.0263 (8)  | 0.0414 (9)  | 0.0019 (6)   | 0.0123 (7)  | 0.0133 (7)  |
| C27  | 0.0341 (9)  | 0.0273 (8)  | 0.0314 (8)  | 0.0028 (7)   | 0.0096 (7)  | 0.0117 (7)  |
| C28  | 0.0601 (10) | 0.0289 (7)  | 0.0402 (8)  | 0.0077 (6)   | 0.0086 (7)  | 0.0084 (6)  |
| C29  | 0.0601 (10) | 0.0289 (7)  | 0.0402 (8)  | 0.0077 (6)   | 0.0086 (7)  | 0.0084 (6)  |
| C30  | 0.0207 (7)  | 0.0316 (8)  | 0.0224 (7)  | 0.0046 (6)   | 0.0120 (6)  | 0.0125 (6)  |
| C31  | 0.021 (2)   | 0.025 (3)   | 0.026 (3)   | 0.003 (2)    | 0.010 (2)   | 0.011 (2)   |
| C32  | 0.026 (3)   | 0.0297 (9)  | 0.012 (3)   | -0.0043 (14) | 0.004 (2)   | 0.0073 (17) |
| C33  | 0.037 (2)   | 0.0225 (19) | 0.030 (2)   | 0.0061 (16)  | 0.0182 (17) | 0.0121 (17) |
| C34  | 0.032 (3)   | 0.027 (2)   | 0.023 (3)   | 0.005 (2)    | 0.009 (2)   | 0.0084 (18) |
| C35  | 0.0307 (18) | 0.033 (2)   | 0.030 (2)   | 0.0012 (15)  | 0.0108 (15) | 0.0166 (18) |
| C36  | 0.038 (3)   | 0.062 (3)   | 0.042 (3)   | 0.003 (3)    | 0.017 (3)   | 0.030 (2)   |
| C31X | 0.031 (3)   | 0.030 (3)   | 0.037 (3)   | 0.008 (2)    | 0.017 (3)   | 0.021 (2)   |
| C32X | 0.026 (3)   | 0.0297 (9)  | 0.012 (3)   | -0.0043 (14) | 0.004 (2)   | 0.0073 (17) |

| C33X            | 0.0217 (14)   | 0.0299 (19) | 0.0300 (18) | 0.0033 (13) | 0.0101 (13) | 0.0146 (16) |
|-----------------|---------------|-------------|-------------|-------------|-------------|-------------|
| C34X            | 0.023 (2)     | 0.0247 (18) | 0.024 (2)   | 0.0026 (18) | 0.0094 (19) | 0.0138 (16) |
| C35X            | 0.0295 (16)   | 0.0322 (19) | 0.0263 (17) | 0.0002 (13) | 0.0099 (13) | 0.0135 (16) |
| C36X            | 0.035 (2)     | 0.042 (2)   | 0.039 (2)   | 0.002 (2)   | 0.017 (2)   | 0.0231 (19) |
| O1W             | 0.0238 (6)    | 0.0322 (7)  | 0.0347 (7)  | -0.0010 (5) | -0.0019 (5) | 0.0163 (6)  |
|                 |               |             |             |             |             |             |
| Geometric param | neters (Å, °) |             |             |             |             |             |
| N1-C1           |               | 1.3391 (17) | С25—Н       | I25B        | 0           | .9900       |
| N1—C7           |               | 1.3961 (17) | C26—C       | 227         | 1           | .517 (2)    |
| N1—C8           |               | 1.4618 (18) | C26—H       | I26A        | 0           | .9900       |
| N2—C1           |               | 1.3304 (18) | С26—Н       | I26B        | 0           | .9900       |
| N2—C2           |               | 1.3965 (17) | С27—С       | 228         | 1           | .520 (3)    |
| N2—C23          |               | 1.4799 (18) | С27—Н       | I27A        | 0           | .9900       |
| N3—C22          |               | 1.3348 (17) | С27—Н       | I27B        | 0           | .9900       |
| N3—C16          |               | 1.3928 (17) | C28—C       | 29          | 1           | .527 (3)    |
| N3—C15          |               | 1.4808 (18) | C28—H       | I28A        | 0           | .9900       |
| N4—C22          |               | 1.3377 (18) | C28—H       | I28B        | 0           | .9900       |
| N4—C21          |               | 1.3940 (18) | С29—Н       | I29A        | 0           | .9800       |
| N4—C30          |               | 1.4740 (18) | С29—Н       | I29B        | 0           | .9800       |
| C1—H1A          |               | 0.9500      | С29—Н       | I29C        | 0           | .9800       |
| C2—C7           |               | 1.3940 (19) | C30—C       | 231         | 1           | .475 (8)    |
| C2—C3           |               | 1.3949 (19) | C30—C       | 231X        | 1           | .580 (7)    |
| C3—C4           |               | 1.389 (2)   | С30—Н       | I30A        | 0           | .9900       |
| С3—НЗА          |               | 0.9500      | С30—Н       | I30B        | 0           | .9900       |
| C4—C5           |               | 1.408 (2)   | С30—Н       | I30C        | 0           | .9600       |
| C4—H4A          |               | 0.9500      | С30—Н       | I30D        | 0           | .9600       |
| C5—C6           |               | 1.386 (2)   | C31—C       | 232         | 1           | .496 (9)    |
| C5—H5A          |               | 0.9500      | C31—H       | I31A        | 0           | .9900       |
| С6—С7           |               | 1.3947 (19) | C31—H       | I31D        | 0           | .9900       |
| С6—Н6А          |               | 0.9500      | С32—С       | 233         | 1           | .560 (10)   |
| С8—С9           |               | 1.519 (2)   | С32—Н       | I32A        | 0           | .9900       |
| C8—H8A          |               | 0.9900      | С32—Н       | I32D        | 0           | .9900       |
| C8—H8B          |               | 0.9900      | C33—C       | 234         | 1           | .529 (7)    |
| C9—C10          |               | 1.3955 (19) | С33—Н       | I33A        | 0           | .9900       |
| C9—C14          |               | 1.404 (2)   | С33—Н       | I33B        | 0           | .9900       |
| C10-C11         |               | 1.392 (2)   | C34—C       | 235         | 1           | .511 (7)    |
| C10—H10A        |               | 0.9500      | С34—Н       | I34A        | 0           | .9900       |
| C11—C12         |               | 1.386 (2)   | С34—Н       | I34B        | 0           | .9900       |
| C11—H11A        |               | 0.9500      | C35—C       | 236         | 1           | .508 (6)    |
| C12—C13         |               | 1.386 (2)   | С35—Н       | I35A        | 0           | .9900       |
| C12—H12A        |               | 0.9500      | С35—Н       | I35B        | 0           | .9900       |
| C13—C14         |               | 1.398 (2)   | C36—H       | I36A        | 0           | .9800       |
| C13—H13A        |               | 0.9500      | C36—H       | I36B        | 0           | .9800       |
| C14—C15         |               | 1.507 (2)   | С36—Н       | I36C        | 0           | .9800       |
| C15—H15A        |               | 0.9900      | C31X—       | -C32X       | 1           | .534 (9)    |
| C15—H15B        |               | 0.9900      | C31X—       | -H31B       | 0           | .9900       |
| C16—C21         |               | 1.392 (2)   | C31X—       | -H31C       | 0           | .9900       |
| C16—C17         |               | 1.3936 (19) | C32X—       | -C33X       | 1           | .536 (8)    |

| C17—C18    | 1.387 (2)   | C32X—H32B     | 0.9900      |
|------------|-------------|---------------|-------------|
| C17—H17A   | 0.9500      | C32X—H32C     | 0.9900      |
| C18—C19    | 1.404 (2)   | C33X—C34X     | 1.522 (6)   |
| C18—H18A   | 0.9500      | C33X—H33C     | 0.9900      |
| C19—C20    | 1.384 (2)   | C33X—H33D     | 0.9900      |
| C19—H19A   | 0.9500      | C34X—C35X     | 1.529 (6)   |
| C20—C21    | 1.394 (2)   | C34X—H34C     | 0.9900      |
| C20—H20A   | 0.9500      | C34X—H34D     | 0.9900      |
| C22—H22A   | 0.9500      | C35X—C36X     | 1.524 (5)   |
| C23—C24    | 1.518 (2)   | С35Х—Н35С     | 0.9900      |
| C23—H23A   | 0.9900      | C35X—H35D     | 0.9900      |
| C23—H23B   | 0.9900      | C36X—H36D     | 0.9800      |
| C24—C25    | 1.522 (2)   | С36Х—Н36Е     | 0.9800      |
| C24—H24A   | 0.9900      | C36X—H36F     | 0.9800      |
| C24—H24B   | 0.9900      | O1W—H1W1      | 0.84 (2)    |
| C25—C26    | 1.533 (2)   | O1W—H2W1      | 0.79 (3)    |
| C25—H25A   | 0.9900      |               |             |
| C1—N1—C7   | 108.14 (11) | C27—C26—H26B  | 108.8       |
| C1—N1—C8   | 125.77 (12) | С25—С26—Н26В  | 108.8       |
| C7—N1—C8   | 126.08 (11) | H26A—C26—H26B | 107.7       |
| C1—N2—C2   | 108.59 (11) | C26—C27—C28   | 114.01 (16) |
| C1—N2—C23  | 125.85 (12) | С26—С27—Н27А  | 108.8       |
| C2—N2—C23  | 125.50 (12) | С28—С27—Н27А  | 108.8       |
| C22—N3—C16 | 108.14 (11) | С26—С27—Н27В  | 108.8       |
| C22—N3—C15 | 128.98 (12) | С28—С27—Н27В  | 108.8       |
| C16—N3—C15 | 122.61 (11) | H27A—C27—H27B | 107.6       |
| C22—N4—C21 | 108.35 (12) | C27—C28—C29   | 112.23 (19) |
| C22—N4—C30 | 125.98 (12) | C27—C28—H28A  | 109.2       |
| C21—N4—C30 | 125.65 (12) | C29—C28—H28A  | 109.2       |
| N2—C1—N1   | 110.19 (12) | C27—C28—H28B  | 109.2       |
| N2—C1—H1A  | 124.9       | C29—C28—H28B  | 109.2       |
| N1—C1—H1A  | 124.9       | H28A—C28—H28B | 107.9       |
| C7—C2—C3   | 122.01 (13) | С28—С29—Н29А  | 109.5       |
| C7—C2—N2   | 106.38 (12) | С28—С29—Н29В  | 109.5       |
| C3—C2—N2   | 131.57 (13) | H29A—C29—H29B | 109.5       |
| C4—C3—C2   | 115.83 (13) | С28—С29—Н29С  | 109.5       |
| С4—С3—НЗА  | 122.1       | H29A—C29—H29C | 109.5       |
| С2—С3—НЗА  | 122.1       | H29B—C29—H29C | 109.5       |
| C3—C4—C5   | 122.12 (13) | N4—C30—C31    | 113.6 (3)   |
| C3—C4—H4A  | 118.9       | N4—C30—C31X   | 110.5 (3)   |
| С5—С4—Н4А  | 118.9       | N4—C30—H30A   | 108.9       |
| C6—C5—C4   | 121.84 (13) | C31—C30—H30A  | 108.9       |
| С6—С5—Н5А  | 119.1       | N4—C30—H30B   | 108.9       |
| С4—С5—Н5А  | 119.1       | С31—С30—Н30В  | 108.9       |
| C5—C6—C7   | 115.94 (13) | H30A—C30—H30B | 107.7       |
| С5—С6—Н6А  | 122.0       | N4—C30—H30C   | 110.1       |
| С7—С6—Н6А  | 122.0       | С31—С30—Н30С  | 93.8        |
| C2—C7—C6   | 122.25 (13) | С31Х—С30—Н30С | 110.5       |
| C2—C7—N1   | 106.71 (11) | H30B—C30—H30C | 121.1       |

| C6—C7—N1      | 130.99 (13) | N4—C30—H30D    | 109.5     |
|---------------|-------------|----------------|-----------|
| N1—C8—C9      | 112.83 (11) | C31—C30—H30D   | 120.1     |
| N1—C8—H8A     | 109.0       | C31X—C30—H30D  | 107.8     |
| С9—С8—Н8А     | 109.0       | H30A—C30—H30D  | 93.7      |
| N1—C8—H8B     | 109.0       | H30C-C30-H30D  | 108.3     |
| С9—С8—Н8В     | 109.0       | C30—C31—C32    | 119.6 (6) |
| H8A—C8—H8B    | 107.8       | C30—C31—H31A   | 107.4     |
| C10-C9-C14    | 118.88 (13) | C32—C31—H31A   | 107.4     |
| C10—C9—C8     | 120.99 (13) | C30-C31-H31D   | 107.4     |
| C14—C9—C8     | 120.13 (12) | C32—C31—H31D   | 107.4     |
| C11—C10—C9    | 121.08 (14) | H31A—C31—H31D  | 106.9     |
| C11—C10—H10A  | 119.5       | C31—C32—C33    | 119.7 (9) |
| C9—C10—H10A   | 119.5       | C31—C32—H32A   | 107.4     |
| C12-C11-C10   | 119.96 (14) | С33—С32—Н32А   | 107.4     |
| C12—C11—H11A  | 120.0       | C31—C32—H32D   | 107.4     |
| C10-C11-H11A  | 120.0       | C33—C32—H32D   | 107.4     |
| C11—C12—C13   | 119.53 (15) | H32A—C32—H32D  | 106.9     |
| C11—C12—H12A  | 120.2       | C34—C33—C32    | 110.0 (6) |
| C13—C12—H12A  | 120.2       | С34—С33—Н33А   | 109.7     |
| C12—C13—C14   | 121.15 (14) | С32—С33—Н33А   | 109.7     |
| С12—С13—Н13А  | 119.4       | С34—С33—Н33В   | 109.7     |
| C14—C13—H13A  | 119.4       | С32—С33—Н33В   | 109.7     |
| C13—C14—C9    | 119.41 (13) | H33A—C33—H33B  | 108.2     |
| C13—C14—C15   | 117.53 (13) | C35—C34—C33    | 114.8 (5) |
| C9—C14—C15    | 122.95 (13) | C35—C34—H34A   | 108.6     |
| N3-C15-C14    | 114.66 (11) | С33—С34—Н34А   | 108.6     |
| N3—C15—H15A   | 108.6       | С35—С34—Н34В   | 108.6     |
| C14—C15—H15A  | 108.6       | С33—С34—Н34В   | 108.6     |
| N3—C15—H15B   | 108.6       | H34A—C34—H34B  | 107.5     |
| C14—C15—H15B  | 108.6       | C36—C35—C34    | 112.6 (5) |
| H15A—C15—H15B | 107.6       | С36—С35—Н35А   | 109.1     |
| C21-C16-N3    | 106.94 (12) | С34—С35—Н35А   | 109.1     |
| C21—C16—C17   | 122.16 (13) | С36—С35—Н35В   | 109.1     |
| N3—C16—C17    | 130.88 (13) | С34—С35—Н35В   | 109.1     |
| C18—C17—C16   | 115.95 (14) | H35A—C35—H35B  | 107.8     |
| C18—C17—H17A  | 122.0       | C32X—C31X—C30  | 104.7 (5) |
| C16—C17—H17A  | 122.0       | C32X—C31X—H31B | 110.8     |
| C17—C18—C19   | 121.77 (14) | C30—C31X—H31B  | 110.8     |
| C17—C18—H18A  | 119.1       | C32X—C31X—H31C | 110.8     |
| C19—C18—H18A  | 119.1       | C30—C31X—H31C  | 110.8     |
| C20—C19—C18   | 122.23 (14) | H31B—C31X—H31C | 108.9     |
| С20—С19—Н19А  | 118.9       | C31X—C32X—C33X | 114.6 (7) |
| C18—C19—H19A  | 118.9       | C31X—C32X—H32B | 108.6     |
| C19—C20—C21   | 115.87 (14) | C33X—C32X—H32B | 108.6     |
| C19—C20—H20A  | 122.1       | C31X—C32X—H32C | 108.6     |
| C21—C20—H20A  | 122.1       | C33X—C32X—H32C | 108.6     |
| C16—C21—C20   | 122.01 (13) | H32B—C32X—H32C | 107.6     |
| C16—C21—N4    | 106.38 (12) | C34X—C33X—C32X | 113.1 (5) |
| C20—C21—N4    | 131.60 (14) | C34X—C33X—H33C | 109.0     |

| N3—C22—N4                       | 110.19 (12)               | С32Х—С33Х—Н33С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.0                    |
|---------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| N3—C22—H22A                     | 124.9                     | C34X—C33X—H33D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.0                    |
| N4—C22—H22A                     | 124.9                     | C32X—C33X—H33D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.0                    |
| N2—C23—C24                      | 112.21 (12)               | H33C—C33X—H33D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107.8                    |
| N2—C23—H23A                     | 109.2                     | C33X—C34X—C35X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 113.3 (4)                |
| C24—C23—H23A                    | 109.2                     | C33X—C34X—H34C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 108.9                    |
| N2—C23—H23B                     | 109.2                     | C35X—C34X—H34C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 108.9                    |
| С24—С23—Н23В                    | 109.2                     | C33X—C34X—H34D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 108.9                    |
| H23A—C23—H23B                   | 107.9                     | C35X—C34X—H34D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 108.9                    |
| C23—C24—C25                     | 113.95 (13)               | H34C—C34X—H34D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107.7                    |
| C23—C24—H24A                    | 108.8                     | C36X—C35X—C34X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 113.0 (4)                |
| C25—C24—H24A                    | 108.8                     | C36X—C35X—H35C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.0                    |
| C23—C24—H24B                    | 108.8                     | C34X—C35X—H35C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.0                    |
| C25—C24—H24B                    | 108.8                     | C36X—C35X—H35D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.0                    |
| H24A—C24—H24B                   | 107.7                     | C34X—C35X—H35D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.0                    |
| C24—C25—C26                     | 112.82 (14)               | H35C—C35X—H35D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107.8                    |
| C24—C25—H25A                    | 109.0                     | C35X—C36X—H36D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5                    |
| C26—C25—H25A                    | 109.0                     | C35X—C36X—H36E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5                    |
| C24—C25—H25B                    | 109.0                     | H36D—C36X—H36E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5                    |
| C26—C25—H25B                    | 109.0                     | C35X—C36X—H36F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5                    |
| H25A—C25—H25B                   | 107.8                     | H36D—C36X—H36F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5                    |
| $C_{27} - C_{26} - C_{25}$      | 113 75 (14)               | H36E—C36X—H36F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5                    |
| C27—C26—H26A                    | 108.8                     | H1W1 - O1W - H2W1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 106 (2)                  |
| C25-C26-H26A                    | 108.8                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 (2)                  |
| $C_2 N_2 C_1 N_1$               | 0.07(16)                  | C22 N3 C16 C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -178 32 (16)             |
| $C_2 = N_2 = C_1 = N_1$         | 177 30 (12)               | $C_{22}$ N3 $C_{16}$ $C_{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72(2)                    |
| $C_{23} = N_2 = C_1 = N_1$      | -0.09(16)                 | $C_{13} = C_{13} = C_{10} = C_{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.2(2)                  |
| $C_{1} = C_{1} = C_{1}$         | 179.03(12)                | $N_{3}$ $C_{16}$ $C_{17}$ $C_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178.08(15)               |
| $C_1 = N_2 = C_2 = C_7$         | -0.02(15)                 | $C_{16} = C_{17} = C_{18} = C_{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5 (2)                  |
| $C_1 = N_2 = C_2 = C_7$         | -177.35(12)               | $C_{10} - C_{17} - C_{18} - C_{19} - C_{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.4(3)                  |
| $C_{23} = N_2 = C_2 = C_7$      | 177.66 (15)               | $C_{1}^{18} - C_{19}^{19} - C_{20}^{20} - C_{21}^{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4(3)                   |
| $C_1 = N_2 = C_2 = C_3$         | 0.3(2)                    | $N_{3} - C_{16} - C_{21} - C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -178,90,(14)             |
| $C_{23} = N_2 = C_2 = C_3$      | 0.5(2)                    | $C_{17} = C_{16} = C_{21} = C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.3(2)                  |
| $C_{1} = C_{2} = C_{3} = C_{4}$ | -177.27(14)               | $N^{2} = C_{16} = C_{21} = C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5(2)                   |
| 12 - 22 - 23 - 24               | 177.37(14)                | 13 - 10 - 21 - 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00(10)                 |
| $C_2 = C_3 = C_4 = C_5$         | -0.2(2)                   | $C_{1}^{1} = C_{10}^{10} = C_{21}^{10} = C_{16}^{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/0.71(14)               |
| $C_{3} = C_{4} = C_{3} = C_{6}$ | -0.3(2)                   | $C_{19} = C_{20} = C_{21} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -178.30(15)              |
| $C_{4} = C_{3} = C_{0} = C_{7}$ | -0.2(2)                   | $C_{19} = C_{20} = C_{21} = N_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -178.30(13)<br>-0.27(16) |
| $C_{3} = C_{2} = C_{7} = C_{6}$ | -0.2(2)                   | $C_{22}$ N4 $C_{21}$ $C_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.27(10)                |
| $N_2 = C_2 = C_7 = C_0$         | -177.08(13)               | $C_{20} = N_4 = C_{21} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -178.09(13)              |
| $C_{2} = C_{2} = C_{1} = N_{1}$ | -1/7.96(12)<br>-0.02(15)  | $C_{22}$ N4 $C_{21}$ $C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 178.30(10)               |
| $N_2 - C_2 - C_7 - N_1$         | -0.03(13)                 | $C_{30} = N_4 = C_{21} = C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.24(17)                |
| $C_{5} = C_{6} = C_{7} = C_{2}$ | 0.1(2)<br>177 34 (14)     | $C_{10} = N_{3} = C_{22} = N_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.34(17)<br>173 71 (14)  |
| $C_{1} = C_{1} = C_{1}$         | 1/7.34(14)                | $C_{13} = N_{3} = C_{22} = N_{4}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 173.71(14)               |
| $C_1 - N_1 - C_7 - C_2$         | 170.04(12)                | $C_{21} = N_{4} = C_{22} = N_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.38(17)                 |
| $C_{1} = N_{1} = C_{1} = C_{2}$ | 1/7.04(12)<br>-177/48(14) | $C_{1} N_{2} C_{2} C_{2$ | 1/0.00 (13)              |
| $C_{1} = N_{1} = C_{1} = C_{0}$ | 1/7.40(14)                | $C_1 - 1N_2 - C_{23} - C_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -82.06(17)               |
| $C_{0} = N_{1} = C_{1} = C_{0}$ | (2)                       | $C_2 - N_2 - C_{23} - C_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02.90(17)                |
| $C_1 = N_1 = C_0 = C_0$         | -101.03(10)               | 112 - 0.23 - 0.24 - 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -75.02(10)               |
| U/                              | //.90(10)                 | $U_{23} - U_{24} - U_{23} - U_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1/3./9(13)              |

| N1—C8—C9—C10                     | 15.32 (18)   | C24—C25—C26—C27     |              | -67.89 (19)  |  |
|----------------------------------|--------------|---------------------|--------------|--------------|--|
| N1—C8—C9—C14                     | -165.31 (12) | C25—C26—C27—C28     |              | -177.48 (16) |  |
| C14—C9—C10—C11                   | 0.2 (2)      | C26—C27—C28—C29     |              | -177.98 (17) |  |
| C8—C9—C10—C11                    | 179.59 (13)  | C22—N4—C30—C31      |              | -113.8 (3)   |  |
| C9—C10—C11—C12                   | -0.3 (2)     | C21—N4—C30—C31      |              | 64.4 (3)     |  |
| C10-C11-C12-C13                  | 0.3 (2)      | C22—N4—C30—C31X     |              | -95.1 (3)    |  |
| C11—C12—C13—C14                  | -0.1 (2)     | C21—N4—C30—C31X     |              | 83.1 (3)     |  |
| C12—C13—C14—C9                   | -0.1 (2)     | N4-C30-C31-C32      |              | 176.3 (6)    |  |
| C12—C13—C14—C15                  | 176.19 (14)  | C31X—C30—C31—C32    |              | 92.5 (18)    |  |
| C10-C9-C14-C13                   | 0.0 (2)      | C30—C31—C32—C33     |              | -147.7 (6)   |  |
| C8—C9—C14—C13                    | -179.39 (13) | C31—C32—C33—C34     |              | -157.1 (7)   |  |
| C10—C9—C14—C15                   | -176.05 (13) | C32—C33—C34—C35     |              | -170.0 (5)   |  |
| C8—C9—C14—C15                    | 4.6 (2)      | C33—C34—C35—C36     |              | -170.2 (4)   |  |
| C22—N3—C15—C14                   | 25.2 (2)     | N4-C30-C31X-C32X    |              | -174.1 (4)   |  |
| C16—N3—C15—C14                   | -161.53 (13) | C31—C30—C31X—C32X   |              | -70.8 (16)   |  |
| C13—C14—C15—N3                   | 97.87 (16)   | C30—C31X—C32X—C33X  |              | 154.5 (6)    |  |
| C9—C14—C15—N3                    | -86.02 (17)  | C31X—C32X—C33X—C34X |              | 154.0 (6)    |  |
| C22—N3—C16—C21                   | 0.16 (16)    | C32X—C33X—C34X—C35X |              | 175.9 (6)    |  |
| C15—N3—C16—C21                   | -174.34 (13) | C33X—C34X—C35X—C    | C36X         | 179.2 (4)    |  |
|                                  |              |                     |              |              |  |
| Hydrogen-bond geometry (Å, °)    |              |                     |              |              |  |
| D—H···A                          | <i>D</i> —Н  | H···A               | $D \cdots A$ | D—H···A      |  |
| O1W—H1W1···Br1                   | 0.84 (3)     | 2.50 (3)            | 3.3271 (17)  | 169 (2)      |  |
| O1W—H2W1···Br2                   | 0.79 (3)     | 2.54 (3)            | 3.3280 (14)  | 177 (3)      |  |
| C1—H1A…Br1 <sup>i</sup>          | 0.95         | 2.80                | 3.6093 (15)  | 144          |  |
| C3—H3A···Br2 <sup>ii</sup>       | 0.95         | 2.92                | 3.7866 (16)  | 153          |  |
| C5—H5A…Br2 <sup>iii</sup>        | 0.95         | 2.89                | 3.8162 (17)  | 167          |  |
| C8—H8A…Br2 <sup>iv</sup>         | 0.99         | 2.93                | 3.9117 (16)  | 172          |  |
| C15—H15A…Br2 <sup>iv</sup>       | 0.99         | 2.72                | 3.6809 (19)  | 165          |  |
| C15—H15B…Br1 <sup>iv</sup>       | 0.99         | 2.80                | 3.7842 (15)  | 170          |  |
| C18—H18A····O1W <sup>v</sup>     | 0.95         | 2.46                | 3.187 (2)    | 133          |  |
| C20—H20A…Br2                     | 0.95         | 2.76                | 3.6602 (16)  | 158          |  |
| C22—H22A…Brl <sup>i</sup>        | 0.95         | 2.70                | 3.5577 (15)  | 150          |  |
| C23—H23A···Br2 <sup>i</sup>      | 0.99         | 2.89                | 3.7836 (14)  | 151          |  |
| $C_{22}$ $U_{22}D$ $D_{r2}^{ii}$ | 0.00         | 2 01                |              |              |  |

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*+1, *y*, *z*+1; (iii) *x*, *y*, *z*+1; (iv) -*x*, -*y*+1, -*z*+1; (v) *x*-1, *y*, *z*.







Fig. 2